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Abstract 

 

To understand, analyse, and investigate common X-ray Mammography techniques, 

terminologies and properties; and how the X-ray Mammography systems can be optimized 

for a safer, more effective, more efficient, more energy efficient procedure for breast cancer 

diagnosis; using Deep Learning (DL)/Artificial Intelligence (AI) , Analytical, Electronic 

Engineering, tools and Methodologies. Using data and breast cancer image datasets from 

validated open source data stores; investigative and comparative analyses were carried out on 

common X-ray Mammography techniques in relation to breast cancer diagnosis and 

treatments, as well as optimization analyses using Electronic engineering principles and 

Artificial Intelligence principles on the quality, intensity, X-ray Mammography properties, 

processes and system. The methodical and data-driven analyses were carried out using the 

following Data, Artificial Intelligence (AI) and Electronic Engineering, methodologies and 
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algorithms: Data Analytics, Convolutional Neural Networks (CNN) in Machine Learning 

(ML) Engineering, and X-ray-Impedance Circuit Composite System Analysis. The modern 

CESM (Contrast-Enhanced Spectral Mammography) technique, confirms to be the most 

efficient especially for a dense breast, but other techniques (including CESM) can also 

improve in efficiency when set up with the appropriate metal filter combination(s). 

Furthermore, the electronic impedance circuit shows good promise in the intelligent reduction 

of X-ray radiation intensity and further variations in energy; which is needed for a safer and 

quality X-ray Mammography procedure. Additionally, an interesting estimation of the 

number of pooling layers needed to achieve a quality metric for breast cancer image 

classification was investigated and proposed.  

Data, AI and Technological processes, techniques and systems are shown to be a promising 

contributor to medical science; and will no doubt create huge collaborative and 

multidisciplinary solutions needed for more efficient, effective and safer diagnoses and 

treatments of breast cancer and also potentially other forms of cancer. 

Keywords: X-ray Mammography, Breast Cancer, Women, Data, Analytics, Convolutional 

Neural Networks (CNN), Artificial Intelligence, Electronic Impedance Circuit, Medical 

Imaging, Electronics Engineering. 

1. INTRODUCTION 

The most common and fatal cancers amongst women is breast cancer. Between 2016 to 2020 

alone, official reports from the World Health Organisation (WHO) indicates approximately 

7.8 million cases of breast cancer, of which 685,000 of them have died (Enshafi et al. 2022), 

which makes it a serious killer of an ailment. For easier treatment of breast cancer and also 

the accompanying reduction of the mortality rate caused by the disease; early detection is 

pertinent and must be continually optimized to fight the disease effectively and efficiently 

(Mashekova et al. 2022:27). It is therefore recommended for women aged between 40 to 75 
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years old have periodic breast screening, because early breast diagnosis and treatment of 

breast lesions, as shown by facts, can be achieved by breast screening performed by using 

different X-ray imaging techniques (Chamieh et al. 2022:22). Most Cancers in general can be 

benign or malignant, depending on its nature and form of spread. The malignant cancer lesions 

consumes on the nutrients of other tissues and spreads throughout the body, while the benign 

cancer lesions, do not affect the surrounding tissues, but stay lumped around a specific area 

(Mahmood et al., 2020). Compared to other medical procedures, mammography is considered 

the most preferred method for screening breast cancer (Sutton,1998). 
 

However, the risk and continuous exposure to harmful radiation is associated with frequent 

medical screenings for cancer, especially for the widely used annual mammograms to detect 

breast cancer (Rashid et al. 2021). A previous study indicates that the radiation dose per 

mammography procedure is around 3.0 mSv (Shields  & Wilkins, 2009). The mostly used 

two-dimensional mammograms from different projections, takes X-ray images of each breast 

as a standard procedure. The three primary regions of the female breast are (1) The skin 

region, (2) the subcutaneous adipose tissue just beneath the skin and (3) the mixed adipose 

and glandular tissue, of which the average dose absorbed is called the average glandular 

dose(AGD) (Schapira , Clark , Wolff , Jarrett , Kumar , Aziz, 1994; Shuster, Patlas, Pinthus, 

Mourtzakis, 2012). To also ensure the safety of X-ray procedures with respect to acceptable 

radiation levels; agencies like the International Commission on Radiological Protection and 

the Institute of Medicine have promulgated recommended AGD levels (Valentin, 2007). 

Therefore, optimizing X-ray Mammography procedures, to deliver even better quality 

screening, and still operate at a safe level of radiation and radiation intensity is a continual 

urgent need towards the effective and efficient diagnosis, prevention, treatments and 

management of breast cancer. Additionally, a modern reasonable assessment of the quality of 

the mammogram should be in its ability to compulsorily strike a balance between benefits and 

risks of patients exposure (Saeed, 2021). For a data-driven world of ours, and the huge 

opportunities presented by Data, AI, digital healthcare and associated technologies; innovative 

measures to analyse, manage and optimize X-ray Mammography procedures have great 

potentials to improve screening procedures, reduce mortality rates and provide continuous 

improvements to systems for the diagnosis, treatment and management of breast cancer, in 
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safer, more precise and less risky approaches. With also the current advancements in imaging 

techniques, further multidisciplinary collaborations and use of technologies, increased 

knowledge sharing and awareness creation about breast cancer, will further excellently position 

the healthcare system to tackle cancer cases even more comprehensively. 

The aim of this research work is to understand and investigate common X-ray Mammography 

techniques, terminologies and properties; and how the X-ray Mammography systems can be 

optimized for a safer, more effective, more efficient, more energy efficient procedure for 

breast cancer diagnosis; thereby aiding medical personnel, researchers, processes, policy 

decision makers to effectively and efficiently tackle breast cancer cases and improve the lives 

of women and humanity; with the use of modern Data, AI and technological  tools. 

2.  LITERATURE REVIEW 

2.1  X-ray Mammography For Breast Cancer 

Mortality rate of breast cancer has been shown to be reduced by screening mammography, 

which detects breast cancer early (James, 2017). Mammography is usually considered the 

standard for breast cancer screening, but factors such as dense breast tissue may affect the 

imaging sensitivity and specificity. The cost of false positive findings is large, as a recent study 

noted that false-positive diagnostic mammography cost 2.8billion ndollars per year as noted by 

a report conducted for about 3.2million Ameriacn women (Pisano, Gatsonis, Hendrick, et al., 

2005; Carbonaro, Di Leo, Clauser et al., 2016).  Therefore, to improve patient care and overall 

cancer quality detection, more advancement in imaging techniques such as 3D tomosynthesis, 

contrast-enhanced spectral mammography (CESM), molecular breast imaging, breast MRI, and 

others; are used to reduce false-positive rates without compromising sensitivity and safety for 

patients (Cheung, Lin, Wan, et al., 2014; Haas, Kalra, Geisel, Raghu, Durand, Philpotts, 2013; 

Luczyńska, Heinze-Paluchowska, Hendrick, et al. 2015; Holbrook, Newel, 2015; MK, 2015; 

Mori, Akashi-Tanaka, Suzuki, et al. 2016) With the advantage of the combination of standard 

full field digital mammography (FFDM) with contrast-enhanced high and low energy images; 

the CESM is a novel breast imaging technique. 
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Figure 1: Experimental setup showing the x-ray source and partially collimated cone beam passing 

through slabs of breast equivalent tissue (resting on styrofoam) towards the spectrum analyser. Note 

that the actual separation between the x-ray source focal spot and detector window is approximately 

15 ft in order to reduce flux. For several measurements, the breast slabs were removed. Note that 

the image is not to scale (Crotty et al., 2012) 
 

Also, other new techniques, like the Dual energy mammography technique, leads to the 

enhancement of pathogegenesis not present in screening mammography, by suppressing the 

contrast between adipose and glandular tissues (Taibi, Vecchio, 2014). Previous studies also 

indicate that adopting the dual energy technique is very promising, as results shows 

improvements regardless of the method used to obtain the dual energy image (Martini et al., 

2020). Furthermore, the indication of malignancy and disease state may be made by the type of 

calcification crystals present in a mammogram, according to several studies (Wu, Chiang, Zhou, 

2017; Han et al., 2020; Fandos-Morera et al., 1988). For example, both minimum and 

microcalcification size or thickness, detection and visualization were explored by the analytical 

model developed band used in simulation studies conducted (Lemacks et al., 2002; Brandan & 

Ramirez, 2006; Koukou et al., 2015; Del Lama et al., 2017). An important demographic marker 

used in screening risk for breast cancer is the radiographic density of the breast. Classification 

of breast types are originally based on their radio-opacity obtained from x-ray mammograms 

which are determined from parenchymal patterns (Boyd et al., 2001). 

Amongst the various types of mammography, which includes film mammography, digital 

mammography, etc; the digital mammography possess a higher cancer detection rate than the 

film mammography. Detecting and guiding cancer treatments, are the main aim of 
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mammography (Khalkhali et al., 1994; Heywang-Köbrunner et al., 2011; Ramani & Suthanthira, 

2014) as also depicted in Figure 1, and it is a well established and cost effective breast detection 

imaging technique (Duffy, 2006; Taba, Yen, Vitak et al., 2003; Otto, Fracheboud, Looman et al., 

2003). Though with regular progress, conventional mammography and full-field digital 

mammography have limitations, particularly in treated and dense breasts (Rosenber, Hunt, 

Williamson et al., 1998). 

2.2 Convolutional Neural Networks (CNN) for breast cancer screening 

CNN has become the most popular algorithm to build efficient models in the world of image 
classification.  CNN’s are similar to ordinary neural networks, except that it explicitly assumes 
that the inputs are images, which allows us to encode certain properties into the architecture. 
This then ensures the parameters in the network are reduced and thereby makes the forward 
function more efficient to implement. The neurons are arranged in three dimensions: width, 
height, and depth. Generally, as also shown in Figure 2, CNN consists of four main types of 
layers: input layer, convolution layer, pooling layer, fully connected layer (Swamynathan, 2017). 
 

 

 

Figure 2: CNN Systems Description for Image Classification (Source : Google Images) 

 

Opportunities have opened up on addressing the challenge of using Deep Learning(DL) 

methods for early detection of breast cancer, by the significant progress in machine learning 

and techniques of image processing, and prevalence of digital MG(mammogram) images due 

to the recent advances in computational technologies (LeCun, Bengio, 2015; Litjens, Kooi, 

Bejnordi, Setio, Ciompi, Ghafoorian, et al., 2017; Zhao et al., 2016; Lee et al., 2017). CAD 
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(Computer Aided Design) systems’ limitations, have been overcome by the help of the recent 

Deep learning method:  CNN (also known as ConvNets), which has gained lots of attention to 

CAD  (Li, Chen, Cao, Ma, 2016; Hedjazi, Kourbane, Genc, 2017). CNNs help radiologists with 

more accurate diagnosis, achieving higher detection accuracy than CAD models, and delivering 

quantitative analysis of suspicious lesions. With higher precision and processing ability, current 

CNN models are designed to improve radiologists’ ability to find even the smallest breast 

cancers at their earliest stages alerting the radiologist to the need for further analysis and further 

research study shows that human error rate for breast cancer diagnoses drop by 85%, when 

using DL methods   (Kooi, Gubern-Merida, Mordang, Mann, Pijnappel, Schuur, et al., 2016; 

Chartrand, Cheng, Vorontsov, Drozdzal, Turcotte, Pal, et al., 2017; Platania et al., 2017; Wang 

et al., 2017) . 

 

A lot of breakthroughs in a variety of pattern recognition and classification problems have been 

let by CNNs in the last few years. Also, breakthroughs using CNN for natural images have been 

aided by the availability of big data repositories, fast graphical processing units and power of 

parallel and distributed computing (Krizhevsky, Sutskever, Hinton, 2012; Greenspan, van 

Ginneken, Summers, 2016). When working with a limited number of medical data, training a 

deep learning CNN model can be very challenging, and such can be addressed by using transfer 

learning(TL) and augmentation techniques (Weiss, Khoshgoftaar, Wang, 2016). Studies show 

that CNN methods that compare images from left and right breasts (Christoyianni, 

Constantinou, Dermatas, 2004)  and also the craniocaudal (CC) and mediolateral-oblique 

(MLO) view of each breast can improve the accuracy of detection and reduce the false positives 

(Zhu, Lou, Vang, Xie, 2017; Kooi, Ginneken, Karssemeijer, Heeten, 2017; Geras, Wolfson, 

Kim, Moy, Cho, 2017; Yi, Sawyer, Cohn, Dunnmon, Lam, Xiao et al., 2017; Ben-Ari, 

Akselrod-Ballin, Karlinsky, Hashoul, 2017; (Dhungel, Carneiro, Bradley, 2017) . CNNs have 

been employed by radiologists to increase the accuracy of early detection of breast cancer by 

carrying out the required risk assessment applications (Fonseca, Mendoza, Wainer, Ferrer, 

Pinto, Guerrero et al., 2015; Kallenberg, Petersen, Nielsen, Ng, Diao, Igel et al., 2016; 

Oustimov , Gastounioti, Hsieh, Pantalone, Conant, Kontos, 2017; Petersen, Nielsen, Diao, 

Karssemeijer, Lillholm, 2014; Qiu, Wang, Yan, Tan, Cheng, Liu et al., 2016; Sun, Tseng, 
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Zheng, Qian, 2016; Carneiro, Nascimento, Bradley, 2015; Becker, Marcon, Ghafoor, Wurnig, 

Frauenfelder, Boss, 2017; Ahn, Heo, Ji, Kim, 2017; Li, Giger, Huynh, 2017). 
 

3. METHODOLOGY 

This research activity and study is very much data driven, as it involves the synthesis of X-ray 

Mammography techniques, X-ray Mammography terminologies, X-ray Mammography properties, 

Deep Learning or Artificial Intelligence Convolutional Neural Network(CNN) data;  relating to 

breast cancer diagnosis and treatments and relevant to the literature from diverse databases and 

portals. The set analyses were carried out in two broad sections of Analysis of X-ray 

Mammography Techniques and properties for breast Cancer and then Image Classification using 

Artificial Intelligence CNN algorithms respectively that influences breast cancer treatments and 

the optimization (medical and energy) of such processes.  The research activities revolved around 

the various data analysis, data analytics, Electronic Engineering principles and theories; and CNN 

processes to carry out the necessary studies and obtain results.  In addition to the theoretical and 

practical concepts and parameters already known; new metrics are derived to indicate, measure and 

confirm key tests and analyses. 

3.1. Data Collection and Preparation 

Furthermore, for such various methodical analyses; data acquisition, data cleaning, data 

wrangling, image datasets preprocessing, sizing and cropping; are among key preliminary steps 

to ensure that the required data is importantly used for such analysis, following the key important 

steps: 

• Step 1 : Acquire data from validated open access data stores and live data web portals 

• Step 2 : Clean the data, label it appropritely, process it, wrangle it and make it fit for 

purpose 

• Step 3:  Store the data and partition them accordingly for use 

• Step 4 : Feed the data into the particular analysis tool, model and process as required. 

• Step 5 : Prepare and specify how results will be reported  

 

3.2.   Research Process Flow 
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The research activity carried out in addition to data acquisition and associated process, is 

summarized by the flowchart in Figure 3. 

 

Figure 3: Summarized Research Process Flowchart 
 

3.3   Analytical Optimization of X-ray procedure using electronic impedance Circuit 
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   For this analytical mathematical approach to the optimization of X-ray procedure from an 

intensity point of view, as it relates with breast cancer; the focus is to be able to intelligently 

reduce the intensity of an X-ray beam to the human tissue using electronic impedance circuit, 

thereby making the procedure safer and more energy efficient, by also providing extra room for 

X-rays to utilize more energy with lesser intensity and better/optimal quality of diagnosis. The 

system conceptual model and analytical background are described: 

3.3.1 System Conceptual Model 

 

Figure 4: System description of  X-ray Impedance Circuit  

Composite System for mammography 

Generally, as depicted in Figure 4, the incident radiation from the X-ray mammogram source 

is converted to electrical energy by the first set of input automatics transducer sensors; and then 

this electrical signal is then processed by the bank of impedances in the electronics circuit and 

the intensity or energy of the signal is adjusted accordingly.  This adjusted signal intensity is 

then fed to the output automatic transducer sensors which then reconvert the electrical signal 

to its equivalent radiation signal, which is then received by the metal filter, which then uses its 

inherent properties to feed the appropriate radiation amount to the human body tissue or breast. 

3.3.2  Analytical Description 
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Figure 5: Simplified Intensity and Electronic Impedance Circuit 

**Where — S---S; is the transducer sensor circuit converting radiation to electric current at 
the input and then converting from electric energy to photon energy at the output. Ii  and Ii * 
are the incident radiation intensity and input equivalent intensity current respectively. Iz* and 
Iz  are the output equivalent intensity current and the output radiation intensity form the 
impedance circuit (Z1 and Z2). MF is the metal filter and IF is the intensity of radiation from 
the filter to the body tissue.   
For the parallel connection of the circuit as shown in Figure 5: 

 
 

From Circuit Theorems; The total impedance for the circuit (Zt) is defined as: 
 

                                        Zt = 
𝑍𝑍1∗𝑍𝑍2
𝑍𝑍2+𝑍𝑍2

                                                                                                             ( 1 ) 
 
Where: Zt is the total impedance of the circuit. Z1 and Z2 are the input and output impedances 
respectively of the circuit. 
 
Also, the individual impedances can be calculated as: 
      

                                  Z1 = 
𝑍𝑍2∗𝑍𝑍𝑍𝑍
𝑍𝑍2+𝑍𝑍2

        ;      Z2 = 
𝑍𝑍1∗𝑍𝑍𝑍𝑍
𝑍𝑍2+𝑍𝑍2

                                                                                ( 2 ) 
 
Assuming, the branch impedances are equal and with no reactive component(X1 = X2 = 0):     
Then:    Z1  =   Z2  = R1 = R2                                                                                                                          ( 3 ) 
 
Where: R is resistance of coil. 
 
Therefore; 

                                         Zt = 
𝑍𝑍1
2

  = 
𝑍𝑍2
2

     
 
Where: From the circuit in Figure 5; Z2 = output impedance of the circuit.                                                  ( 4 ) 
 
Also, by definition: 
 
            Intensity of Radiation (I) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃𝑃𝑃)

𝐶𝐶. 𝑆𝑆.𝐴𝐴 𝑅𝑅𝑜𝑜 𝑚𝑚𝑃𝑃𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚(𝐴𝐴)�                                    ( 5 ) 
Where:  C.S.A is Cross Sectional Area in (m2) ; Pr in (Watt) and I  in (Watt/sr)                   
 
 
 
From the principle of conservation of energy and adapting the principle of photo-electricity; 
 
 Therefore, 
 
                                                    Pr  =  PA                                                                                                      ( 6 ) 



4 st International Congress of Social Science, Innovation & Educational Technologies 
 

549 

Where:  PA  is equivalent electric power from transducer sensor of X-ray radiation power 
 
 
 
 
Given from Ohm’s law:     

                                              Pt = Pa = 
𝑉𝑉2

𝑍𝑍𝑍𝑍
                                                                                                     ( 7 ) 

 
Where: Pt is the total equivalent power into the circuit from the X-ray radiation 

 
Similarly, Power output from the circuit to the metal filter is defined as: 
                                            

                                              P2  = 
𝑉𝑉2

𝑍𝑍2
                                                                                                            ( 8 ) 

Where: V is the voltage of the circuit or tube voltage of the X-ray tube. 
 
 
Therefore, from Equation 5, it is deduced as follows: 
 

                                 Ii =  
𝑉𝑉2

𝑍𝑍𝑍𝑍 ∗ 𝐴𝐴
     and     IZ =  

𝑉𝑉2

𝑍𝑍2 ∗ 𝐴𝐴
                                                                                    ( 9 )         

 
Where: Ii  and Iz are the total circuit /incident and output intensity measures of and from the circuit 
respectively. A is the cross sectional area of the resistive coils (assuming equal dimension of the 
coils). 
 
Also, as defined: 
            
  Energy of Radiation per volume (E) = 𝐼𝐼𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅𝑅𝑅𝐼𝐼 𝑅𝑅𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐼𝐼)/𝑉𝑉𝑃𝑃𝑉𝑉𝑅𝑅𝑉𝑉𝑅𝑅𝑅𝑅𝐼𝐼 𝑅𝑅𝑜𝑜 𝑉𝑉𝑅𝑅𝑙𝑙ℎ𝑅𝑅(𝑉𝑉)                   ( 10 ) 
 
Where:  E is in unit (eV) (assuming unit volume); I  in (Watt/sr)  and c is (3 x108 m/s2) 

 
Therefore, merging Equations 5, 9 and 10;  
 

                      Ei =  Ii
𝑐𝑐

     and     Ez = 
Iz
𝑐𝑐

    and     EF = 
IF
𝑐𝑐

                                                                               ( 11 ) 

 
Where: Ei  and Ez are the total circuit /incident and output photon Energy measures of and from the 
circuit respectively. EF  is the photon Energy of Intensity IF at the metal filter. 
 
Also, for the metal filter (F): 
 
 Using the mass absorption law;  
                                              IF  =   Ii * 𝑃𝑃−𝜇𝜇𝜇𝜇                                                                                               ( 12 ) 
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Where: 𝜇𝜇  is the energy absorption coefficient of the metal filter of breast material, X is the thickness 
of the attenuating beam crossed metal filter or breast (cm or mm). 
 
Additionally, by definition; 
                                      HVL = X  ;   when Ii is reduced by half. 
Also,      
                                               𝜇𝜇 = 𝑀𝑀 ∗  𝜌𝜌                                                                                                      ( 13 ) 
 
Where: 𝑀𝑀  is the Mass energy absorption coefficient of the metal filter of breast material (cm2/g) and 
𝜌𝜌  is the density of the metal filter, absorption material or breast (g /cm3) 
 Therefore, maximum possible photon energy( Eimax ) available for a X-ray Mammography; 
 
                                 Eimax  ≤  ( Ez +  EF ) ± αK                                                                                              ( 14 ) 
 
Where: αK  is the variable K-edge cut off energy level of the metal filter (eV); and Ez  and EF  can 
be varied according to safe energy level needs. 

 
Furthermore,  
 
For a chain of N impedance branches (B) in a circuit; 
 
Also assuming, the branch impedances for each parallel impedance branch are equal and with no reactive 
components  (X1 = X2 = …. XN = 0): 
 
Therefore, from Equation4, for a series connection of the branches (B), we then have: 
 

                 ZtNB = 
𝑍𝑍1
2

  = 
𝑍𝑍2
2

  + 
𝑍𝑍3
2

  = 
𝑍𝑍4
2

   + ….. + 
𝑍𝑍𝑍𝑍−1
2

  = 
𝑍𝑍𝑍𝑍
2

                                                                  ( 15 ) 

 
Where: ZtNB = Is the total input impedance of the branched circuit and ZN = is the output 
impedance of the circuit to the metal filter. 
 

 
 
Similarly, following from Equation 9; 
 

                                 IiNB =  
𝑉𝑉2

𝑍𝑍𝑍𝑍N ∗ 𝐴𝐴
     and     IZN =  𝑉𝑉2

𝑍𝑍𝑍𝑍 ∗ 𝐴𝐴
                                                                        ( 16 ) 
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Where: IiNB  and IzN are the total circuit /incident and output intensity measures of and from the 
cascaded branched circuits respectively. A is the cross sectional area of the resistive coils (assuming 
equal dimension of the coils). 

 
3.4   Convolutional Neural Network (CNN) for Image Classification 

 

 
 

Figure 6:  Typical CNN Architecture for Mammography (Abdelhafiz et al., 2017). 
 

CNNs are actually artificial Neural Networks (ANN) optimized for image-related pattern 
recognition. CNNs are based on convolutional layers instead of fully connected layers.  As 
shown in Figure 6, a convolutional layer is used to detect patterns in an image with a filter. A 
filter is just a matrix that is applied to a portion of an input image through a convolutional 
operation and the output will be another image (also called a feature map) with the highlighted 
patterns found by the filter (So et al., 2020). 
 
A convolution is a specific type of matrix operation. For an input image, a filter of size n*n 
will go through a specific area of an image and apply an element-wise product and a sum and 
return the calculated value: 
 

 
Figure 7: Convolutional operations (So et al., 2020)   
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In Figure 7, we applied a filter to the top-left part of the image. We then apply element-wise 

multiplication; then we will perform the same operation by sliding the filter to the right by one 

column from the input image. We keep sliding the filter until we have covered the entire image. 

Rather than sliding column by column, we can also slide by two, three, or more columns. The 

parameter defining the length of this sliding operation is called the stride (So et al., 2020) . 

Furthermore, since a convolutional operation tend to decrease the size of an image after 

processing, we can retain the dimension of the image by applying padding; which is the 

addition of rows and columns with the value 0 around the border of the input image. A 

convolutional layer is just the application of the convolutional operation with multiple filters.  

 
3.4.1  Analytical Estimation of Pooling for CNN  

A pooling layer is a matrix of a given size and will apply an aggregation function to each area 

of the feature map. The most frequent aggregation method is finding the maximum value of a 

group of pixels: 
 

 
Figure 8: Example working of the pooling area (So et al., 2020)   

 
From the background theories of the CNN as briefly described; it can be deduced that, the 

number of pooling layers are proportional to the validation accuracy score of the CNN model; 

with the required number of classes a factor in such proportional relationship, for the 

classification simulation. 

 

From the mathematical description of direct proportionality; 
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                                               P
1

𝑐𝑐+1    ∝  a                                                                                               ( 17 ) 

 
Therefore,   
 

                                               P
1

𝑐𝑐+1     =   𝛾𝛾 * a                                                                                      ( 18 )          
 

Where: c is the number of images classes to be resolved; 𝛾𝛾  is the constant factor, is a function 

of other non-changing parameters in the model, for example pooling size, stride, filter size and 

the specific CNN architecture employed. P is the estimated number of pooling layers required 

and a is the target or expected validation accuracy of the CNN model for the specific number 

of pooling layers or convolution-pooling layers (i.e. since the number of convolution layers is 

usually taken as the same amount as the number of pooling layers). 

 

Now, resolving the proportional relationship; 
 

                                            
√𝑃𝑃1𝑐𝑐+1

𝑎𝑎1
    =   

√𝑃𝑃2𝑐𝑐+1

𝑎𝑎2
                                                                                     ( 19 ) 

Where:  P1 and a1 are the initial number or reference number of pooling layer(s) and the initial 
or reference validation score respectively. Also, P2 and a2 are the target number of pooling 
layer(s) and the final or target validation score respectively. 
Finally, by also incorporating padding; the estimated number of pooling layers (NP) is thus: 
                                                            NP  ≈  P2  +  1                                                                               ( 
20 ) 
Since the number of Convolutional layers is usually used as the same as the pooling layers, 
therefore, the number of estimated Conv-pool layers is also NP . 
 
 
4.  RESULTS AND DISCUSSION 
 
This section outlines the results obtained and the various associated interpretations, and 
discussions on the results obtained in harmony with theories derived and literature obtained. 
 
 
 



4 st International Congress of Social Science, Innovation & Educational Technologies 
 

554 

 
 
 
 
 
4.1   Dense Breast X ray exposure analysis 
 
 

Table 1:  Radiation Exposure Settings for 2D FFDM, 3D Tomosynthesis, and CESM 
Studies of Dense and Non-Dense  Breast Tissues 

Filter Type---Imaging 
Technique 

Filter K-Edge 
Energy 

Cut off   (keV) 

Photon 
Energy (keV) 

Breast 
Thickness 

(cm) 

Tube Current–Time 
Product (per 10 mAs) 

 
(** Dense Breast) 

Tube Current–Time 
Product (per 10 mAs) 
 
(** Non-Dense Breast) 

Rh ---2D FFDM 23.3 25 1.1 2.7 2.5 
Rh ---2D FFDM 23.3 28 2 3.1 4.4 
Rh ---2D FFDM 23.3 26 3 7.6 6.4 
Rh ---2D FFDM 23.3 28 4 9.7 7.7 
Rh ---2D FFDM 23.3 29 5 15.2 11.8 
Rh ---2D FFDM 23.3 31 6 24 17.6 
 Al ---3D tomosynthesis 1.56 26 1.1 3 3 
Al ---3D tomosynthesis 1.56 26 2.1 3.8 3.3 
Al ---3D tomosynthesis 1.56 28 3.1 3.8 3.4 
Al ---3D tomosynthesis 1.56 29 4.1 5 4.4 
Al ---3D tomosynthesis 1.56 31 5.1 5.7 5 
Al ---3D tomosynthesis 1.56 33 6.1 6.9 6.4 
Rh ---CESM (Low Energy) 23.3 26 1.1 2.4 2.3 
Rh ---CESM (Low Energy) 23.3 26 2 4.4 3.9 
Rh ---CESM (Low Energy) 23.3 26 3 8.2 6.8 
Rh ---CESM (Low Energy) 23.3 28 4 10.4 8.3 
Ag ---CESM (Low Energy) 25.51 29 5 12.1 9.7 
Ag ---CESM (Low Energy) 25.51 31 6 19 14.2 
Cu ---CESM (High Energy) 8.98 45 1.1 3.2 2.9 
Cu ---CESM (High Energy) 8.98 45 2 5.7 4.6 
Cu ---CESM (High Energy) 8.98 45 3 8.4 5.7 
Cu ---CESM (High Energy) 8.98 45 4 11.4 9 
Cu ---CESM (High Energy) 8.98 49 5 10.5 8.2 
Cu ---CESM (High Energy) 8.98 49 6 18.7 13.8 

 
 (Data Source: (James, 2017) 

 
**Note— Each slab contained two tissue-equivalent materials mimicking 100% fatty and 100% glandular 
tissues in ratios of approximately 50:50 (nondense) and 70:30 (dense) by weight. FFDM = full-field digital 
mammography, CESM = contrast-enhanced spectral mammography, Rh = rhodium, Al = aluminum, Ag = 
silver, Cu = copper. 
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Figure 9: Plot of Dense breast, Imaging Technique and Energy relationships 

 
As shown in the profile plot in Figure 9 for a Dense breast, using Table 1; the imaging 

techniques (2D FFDM, 3D tomosynthesis, CESM), have photon energies that increases with 

breast thickness, in an estimated even ratio of (2-3%) as shown. Additionally, the tube current 

which is also a function of the imaging technique/Xray equipment also increases with breast 

thickness, with the most minimal increase noticed with the 3D tomosynthesis technique. 

 

Furthermore, filter types K-edge Energy value is lesser than and also not proportional to the 

photon energy of the xray imaging equipment. For specific (Metal) filter types, it is shown that 

Rh and Ag both have more than a 50% greater comparative value of K-Edge than Cu and Al 

(which has the least K-edge value). Also, the plots indicates that the CESM (High Energy 

Imaging type) has a greater photon energy (more than a 40% greater comparative value) than 

other imaging techniques analysed; but the CESM(Low Energy Imaging type) is nearly 

equivalent (with a 1-2% variations) to the 2DFFDM and 3D tomosynthesis imaging techniques. 

From the plots in Figure 9 and analysed results for a Dense breast, the imaging techniques (2D 

FFDM, 3D tomosynthesis, CESM); the photon energy expectedly increases as breast thickness 

increases; such energy increases is noticeably not related to the K-edge cut off energy, which 

is the inherent characteristics of the metal filter; thereby indicating that for quality xrays, as 

photon energy from the xray equipment increases, such can be balanced by selecting the 
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appropriate metal filter with the K-edge cut-off energy, large enough to provide a safer level of 

radiation reaching the human tissue; this makes metal filters of higher K-edge cutoff more 

suitable for xray activities. It is already noted that low energy xrays are usually absorbed by the 

body tissue and thereby increase the absorbed dosage, so energy levels above 15KeV, are 

usually recommended for breast cancer xrays (Mowlavi, 2005). Also, though Rh indicates the 

highest energy potential from the comparative analysis; to effectively optimize and manage 

resources; a combination of metals can be used to achieve a target K-edge cut off and even 

produce a much more energy efficient and effective system as required for not only a quality 

an xray procedure, but a safer one with better protection from harmful radiations. Some recent 

studies have also shown that different metal target filter combinations, such as : Mo-Rh, W-

Rh, Rh-Al, reported about 50% decrease of the average glandular dosage, when compared with 

a metal filter of one type or one type combination like Mo-Mo (Dance, Thilander, Sandborg, 

Skinner, Castellano, Alm, 2000; Thilander, Ackerholm, Berlin, Bjurstam, Mattsson et al., 1997; 

Jennings, Eastgate, Siedband, Ergun, 1981). Additionally, for a dense breast, the tube current 

from the xray equipment, increases more sharply and greatly as breast thickness increases, 

indicating the need for more x-ray tube current for a period of exposure to create better quality 

imaging as breast thickness increases. Interestingly, from the analysis combining the metal 

filters qualities and the imaging technique, it is observed that the tube current within a given 

time of exposure, is most affected by the filter characteristics and the thickness of the breast; 

as it shows minimal values even for section with high x-ray energy, further suggesting that, the 

tube current can be optimized, varied and also practically controlled by appropriately adjusting 

it to suit the breast thickness and in harmony with the unique metal filter deployed, to ensure a 

safer procedure, especially when using x-rays of too high energy or too low (irradiation) energy. 

For the techniques analysed, the CESM indicates the most efficiency as an imaging technique 

for low and high energy; but also other techniques analysed show some efficiency and can be 

utilized for specific purposes(when also combined with the adequate metal filter), for example 

for mammography that requires low energy x-rays. As also confirmed by some experiments, 

CESM has shown higher diagnostic accuracy than 2D FFDM and could even be compared with 

the accuracy of breast MRI (Hobbs, Taylor, Buzynski, Peake, 2015; Fallenberg, Dromain, 

Diekmann  et al., 2014; Thibault, Balleyguier, Tardivon, Dromain, 2012; Jochelson, Dershaw, 

Sung et al., 2013). Furthermore, though CESM has the tendency to add  further radiation 
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dosage(due to its higher energy of operation) than FFDM, it shows better promise in being able 

to help improve radiologists’ ability to differentiate between malignant and benign breast 

cancers for denser breasts (Dromain, Canale, Saab-Puong, Carton, Muller, Fallenberg, 2014; 

Fallenberg, Dromain, Diekmann, et al., 2014; Jeukens, Lalji, Meijer et al., 2014). 

 

4.2    Non-Dense Breast X ray exposure analysis 

 

 
Figure 10: Plot of Non-Dense breast, Imaging Technique and Energy relationships 

 
 
 

As shown in the profile plot in Figure 10 for a Non-Dense breast, using Table 1; the 

relationships and values of imaging techniques (2D FFDM, 3D tomosynthesis, CESM), photon 

energies and breast thickness are same as for the Dense breast. Additionally, the tube current is 

lower than that for the Dense breast, but also similarly increases with breast thickness, with the 

most minimal increase noticed with the 3D tomosynthesis technique. Furthermore, also for the 

Non-Dense breast, filter types K-edge Energy values are similarly lesser than and also not 

proportional to the photon energy of the X-ray imaging equipment; as with the Dense breast.  

For specific (Metal) filter types, the Non Dense breast displays similar characteristics, 

relationships and values as that for the Dense breast, for the analysis carried out. 
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From the plots in Figure 10 and analysed results for a Non-Dense breast, the imaging techniques 

(2D FFDM, 3D tomosynthesis, CESM); the photon energy shows similar qualities with the 

thickness of breast, metal filter characteristics and the K-edge and energy potentials and 

radiation protection abilities of the filter metals; by acting ac energy windows, filters provide 

an energy allowance and barrier to sustain the balance between the quality and safety of x-ray 

procedures (Jaffe and Maidment, 2014). Additionally, for a Non-dense breast, the tube current 

from the x-ray equipment, increases less sharply and lesser than that for a Dense breast, as 

breast thickness increases, indicating the need for a lesser x-ray tube current for a period of 

exposure to create better quality imaging as breast thickness increases for a Non-Dense breast. 

Also, noticeably, as in the case of a Dense Breast; the analysis combining the metal filters 

qualities and the imaging technique, shows that the tube current within a given time of 

exposure, is most affected by the filter characteristics and the thickness of the breast; as it shows 

minimal values even for sections with high x-ray energy, further suggesting that, the tube 

current can also be optimized for a Non-dense breast, in harmony with filter type and breast 

thickness, to ensure a safer procedure, especially when using x-rays of high energy. 

Furthermore, same as for a Dense breast, the CESM indicates the most efficiency as an imaging 

technique for low and high energy for a Non-Dense breast; but other techniques also showed 

good potential of increase in efficiency for specific purposes(when also combined with the 

adequate metal filter), especially for procedures that require lesser x-ray energy or varied 

energy systems; like the dual energy system, where the K-edge filtering technique of the filters 

are used to shape the low and high energy spectra and obtain an improved quasi-monochromatic 

spectra (Koukou et al., 2017; Koukou et al., 2017; Martini et al., 2017). 
 
 
 
 
 
 
 
 
 
 

4.2 Dense Breast CESM Intensity and Circuit Impedance Analysis 
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Table 2: Intensity of x-ray radiation, and electronic circuit impedances for CESM Studies of 
Dense Breast Tissues 

Where – Ii = incidence intensity, Iz = Intensity from electronic circuit, IF = intensity from metal filter; Z2 = 
output impedance of circuit, Zt = Total impedance of circuit. Using unit Cross sectional Area of impedance 
coil. 
 
**Note— Each slab contained two tissue-equivalent materials mimicking 100% fatty and 100% glandular 
tissues in ratios of approximately 50:50 (nondense) and 70:30 (dense) by weight. CESM = contrast-
enhanced spectral mammography, Rh = rhodium, Ag = silver, Cu = copper. (Data Source: (James, 2017) 

 
Figure 11: Plot of Dense breast, CESM Technique, Intensity and Circuit Impedance 

relationships 
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Filter Type---Imaging 
Technique 

Ii (Watt/sr) Iz   (Watt/sr)  IF  (Watt/sr) Z2     (KiloOhm) Zt    (KiloOhm) 

Rh ---CESM (Low Energy) 2.086977724 1.043488862 1.049130827 0.323913376 0.647826752 
Rh ---CESM (Low Energy) 2.086977724 1.043488862 1.049130827 0.323913376 0.647826752 
Rh ---CESM (Low Energy) 2.086977724 1.043488862 1.049130827 0.323913376 0.647826752 
Rh ---CESM (Low Energy) 2.247514472 1.123757236 1.123757236 0.348829789 0.697659579 
Ag ---CESM (Low Energy) 2.327782846 1.163891423 1.167345264 0.361287996 0.722575992 
Ag ---CESM (Low Energy) 2.488319594 1.244159797 1.247851834 0.38620441 0.772408819 
Cu ---CESM (High Energy) 3.61207683 1.806038415 1.806640852 0.560619304 1.121238609 
Cu ---CESM (High Energy) 3.61207683 1.806038415 1.806640852 0.560619304 1.121238609 
Cu ---CESM (High Energy) 3.61207683 1.806038415 1.806640852 0.560619304 1.121238609 
Cu ---CESM (High Energy) 3.61207683 1.806038415 1.806640852 0.560619304 1.121238609 
Cu ---CESM (High Energy) 3.933150326 1.966575163 1.96723115 0.610452132 1.220904263 
Cu ---CESM (High Energy) 3.933150326 1.966575163 1.96723115 0.610452132 1.220904263 
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As shown in the profile plots of Figure 11 using Table 2;  for a Dense breast, using the CESM 

imaging technique; the total intensity of the X-ray radiation is reduced by 50% by the electronic 

energy sensor filtering circuit; and the intensity produced by the electronic circuit is 

approximately equal to the intensity of the radiation by either of the Metallic Filters (Rh, or Ag, 

or Cu). Furthermore, the impedances of the electronic energy sensor filtering circuit, increases 

very minimally, between 1-2% (with the total circuit impedance being double of the output 

impedance value) or rather approximately constant, with corresponding increase of the total 

intensity of the radiation and intensity of the electronic and Metals filters, respectively; such 

minimally gradual increase is shown to be approximately negligible in some cases. 

Additionally, the impedances increases by over 90% from a low energy radiation to a high 

energy radiation, for the same metal filters and imaging technique. 
 

From the plots in Figure 11 using Table 1; and analysed results for the CESM Imaging 

technique; the reduction in the total incident intensity by the electronic filter circuit from for 

low and high energy x-rays, indicates a potential for safer x-ray operation can be achieved, with 

also more room to increase the intensity if needed by the variation of the electronic circuit 

impedances. Generally, lower intensity beams are needed for x-rays, and such trade-off 

provided by the electronic circuit, can be exploited for greater accuracy for x-rays while 

minimizing harmful radiation intensity; because due to the risk of harmful radiation exposure, 

the possible fear of such exposure due to mammography should also be addressed (Heywang 

et al., 1997); because the harmful radiation energy intensity levels are checked or reduced 

appropriately by the electronic circuit, by varying its impedance values (Z2 and Zt) as depicted. 

This ensures that there is a good trade-off between x-ray radiation energy for better diagnosis 

and the safety of patient/body tissues from harmful radiations, because the intensity of beam 

arriving at the breast tissue from the metals filter, will be at an acceptably safe level; due to the 

radiation being processed by the initial electronic impedance circuit and further by the inherent 

metal filters. As also elaborated by a credible report, a risk estimate of breast cancer radiation 

induction which was based on available data from the International committee on Radiation 

Protection(ICRP) 2007 report, the scientific literature, the Biological effects of Ionizing 

Radiation(BEIR VII) 2006 and a previously published risk model; was provided in response to 

screening x-ray mammography, and helped provide a standard approximate incidence value of 
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radiation-induced cancers brought about by screening mammography, as a means to relate this 

to the baseline incidence of breast cancer in women (De Gelder, Draisma, Heijnsdijk, et al., 

2011; Wrixon, 2008). Additionally, for high energy x-rays as analysed for the CESM Imaging 

technique; the much greater increases in radiation intensity (Iz and IF) for both the electronic 

and metal filters respectively, indicates that the system provides more radiation intensity 

availability and also protection for high energy radiations, by a correspondingly higher intensity 

values compared to lower energy x-rays; but both intensities being lesser than the incident 

radiation intensity. Additionally, for both high and low energy x-rays, the intensity values of 

the electronic circuit is approximately equal to the intensity of radiation delivered by the metal 

filters, thereby indicating the processing ability of the electronic circuit to act as even a 

substitute to the metal filter or also having the potential of combination with the metal filters, 

to create a ‘hybrid’ system, that provides adequate radiation intensity levels and protection 

against harmful radiation levels, that can also be varied using the impedance values of the 

electronic circuit needed for a more accurate and safer x-ray analysis.  Also, the overall 

approximately constant values of the electronic circuit impedances at the low energy (lower 

impedances) or high energy (higher impedances) levels, further indicates the electronic circuit 

integrity across different system conditions as required by the analysis. 
 

 
4.3 Dense Breast CESM Energy and Circuit Impedance Analysis 

Table 3:  Energy of x-ray radiation, and electronic circuit impedances for CESM Studies 
of Dense Breast Tissues 

Filter Type---Imaging 
Technique 

Photon 
Energy 
(keV)   
 

Ez  (keV) 
 

 EF  (keV) 
 

Ek  (keV) Z2    (per 100 Ohm) Zt    (per 100 
Ohm) 

Rh ---CESM (Low Energy) 26 13 13.07028877 23.3 3.239133759 6.478267518 
Rh ---CESM (Low Energy) 26 13 13.07028877 23.3 3.239133759 6.478267518 
Rh ---CESM (Low Energy) 26 13 13.07028877 23.3 3.239133759 6.478267518 
Rh ---CESM (Low Energy) 28 14 14 23.3 3.488297894 6.976595789 
Ag ---CESM (Low Energy) 29 14.5 14.54302867 25.51 3.612879962 7.225759924 
Ag ---CESM (Low Energy) 31 15.5 15.54599616 25.51 3.862044097 7.724088195 
Cu ---CESM (High Energy) 45 22.5 22.50750529 8.98 5.606193044 11.21238609 
Cu ---CESM (High Energy) 45 22.5 22.50750529 8.98 5.606193044 11.21238609 
Cu ---CESM (High Energy) 45 22.5 22.50750529 8.98 5.606193044 11.21238609 
Cu ---CESM (High Energy) 45 22.5 22.50750529 8.98 5.606193044 11.21238609 
Cu ---CESM (High Energy) 49 24.5 24.50817243 8.98 6.104521315 12.20904263 
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Where – Ez = Energy from electronic circuit coil, EF = Energy from metal filter; EK = K-Edge 
cut-off energy of metal filter ; Z2 = output impedance of circuit, Zt = Total impedance of circuit. 
Using unit Cross sectional Area of impedance coil.   
 
**Note— Each slab contained two tissue-equivalent materials mimicking 100% fatty and 100% 
glandular tissues in ratios of approximately 50:50 (nondense) and 70:30 (dense) by weight. 
CESM = contrast-enhanced spectral mammography, Rh = rhodium, Ag = silver, Cu = copper.  
(Data Source: (James, 2017) 

 
 

 
Figure 12: Plot of Dense breast, CESM Technique , Energy and Circuit Impedance relationships 

 
 

As shown in the profile plots of Figure 12 using Table 3 for a Dense breast, using the CESM 

imaging technique; the total incident photon energy of the Xray radiation is reduced by about 

50% by the electronic energy sensor filtering circuit (Ez); and the photon energy produced by 

the electronic circuit is approximately equal to the energy of the radiation (EF) by either of the 
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Metallic Filters (Rh, or Ag, or Cu). Additionally, filter types K-edge energy values are not 

affected expectedly by this energy reduction achieved, which creates an interesting scenario 

that can be exploited.  

Furthermore, the impedances of the electronic energy sensor filtering circuit, increases very 

minimally, between 1-2% (with the total circuit impedance being double of the output 

impedance value) or rather approximately constant with corresponding increase of the incident 

photon energy of the Xray radiation and photon energies of the electronic and Metals filters, 

respectively; such minimally gradual increase is shown to be approximately negligible in some 

cases. Additionally, the impedances increases by over 90%, from a photon/radiation energy 

radiation to a high energy radiation, for the same metal filters and imaging technique; while the 

K-edge cut off energy values remain constant for each metal filter. 

 

From the plots in Figure 12 using Table 3 and analysed results for the CESM Imaging 

technique; the reduction in photon energy by the electronic circuit also in harmony with the 

reduction of the intensity of the radiation by the electronic filter circuit, does not affect the K-

edge cut off energy of the metal filters; which indicates that the metals with a higher K-cut off 

energy can be utilized(which is good for better mammography); because such higher cut off K-

edge filters provides a much more quasi-monochromatic beam for breast imaging, which 

provides better ability to separate unique tissues, this allowing for a much more improved 

distinction between low-contrast objects(1-2% difference), such as tissues having cancer and 

surrounding normal breast tissues (Hammerstein et al., 1979), while the total incident photon 

energy can be further increased without harmful radiations affecting the human breast. The 

harmful radiation energy levels are checked mated or reduced appropriately by the electronic 

circuit, by varying its impedance values (Z2 and Zt) as depicted. This ensures that there is a 

good trade-off between xray radiation energy for better diagnosis and the safety of patient/body 

tissues from harmful radiations, because the cumulative photon energy arriving at the breast 

tissue from the metals filter, will be at an acceptably safe level; as processed by the initial 

electronic impedance circuit and then the inherent metal filters k-edge cut off targets. 

Furthermore, for high energy xrays as analysed for the CESM Imaging technique; the much 

greater increases in photon energies (Ez and EF) for both the electronic and metal filters 

respectively, indicates that the system provides more energy availability and also protection for 
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high energy radiations, by a correspondingly higher energies values compared to lower energy 

xrays; but both energy levels being lesser than the incident photon energy . Additionally, for 

both high and low energy xrays, the photon energy values of the electronic circuit is 

approximately equal to the energy of the radiation delivered by the metal filters, thereby 

indicating the processing ability of the electronic circuit to act as even a substitute to the metal 

filter or also having the potential of combination with the metal filters, to create a ‘hybrid’ 

system, that provides adequate energy levels and protection against harmful radiation levels, 

that can also be varied using the impedance values of the electronic circuit needed for a more 

accurate and safer xray analysis.  Also, the overall approximately constant values of the 

electronic circuit impedances at the low energy (lower impedances) or high energy (higher 

impedances) levels, further indicates the electronic circuit integrity across different system 

conditions as required by the analysis. 
 

 
4.4 Dense Breast CESM HVL and Circuit Impedance Analysis 

Table 4:  HVL of x-ray radiation mammography, and electronic circuit impedances for 
CESM Studies of Dense Breast Tissues 

Where – HVL= Half value layer in mammography; Z2 = output impedance of circuit, Zt = Total impedance 

of circuit. 
 
**Note— Each slab contained two tissue-equivalent materials mimicking 100% fatty and 100% glandular 
tissues in ratios of approximately 50:50 (nondense) and 70:30 (dense) by weight. CESM = contrast-
enhanced spectral mammography, Rh = rhodium, Ag = silver, Cu = copper.  (Data Source: (James, 2017) 
 
 

Filter Type---Imaging 
Technique 

HVL (for 
circuit) (mm) 
 

HVL measured 
at filter (mm) 

 Breast 
Thickness(cm) 

Z2     (KiloOhm) Zt    (KiloOhm) 

Rh ---CESM (Low Energy) 0.21682606 0.497 1.1 0.323913376 0.647826752 
Rh ---CESM (Low Energy) 0.21682606 0.497 2.1 0.323913376 0.647826752 
Rh ---CESM (Low Energy) 0.21682606 0.497 3.1 0.323913376 0.647826752 
Rh ---CESM (Low Energy) 0.329010984 0.529 4 0.348829789 0.697659579 
Ag ---CESM (Low Energy) 0.395974802 0.575 5 0.361287996 0.722575992 
Ag ---CESM (Low Energy) 0.395974802 0.608 6 0.38620441 0.772408819 
Cu ---CESM (High Energy) 3.531448374 3.13 1.1 0.560619304 1.121238609 
Cu ---CESM (High Energy) 3.531448374 3.13 2.1 0.560619304 1.121238609 
Cu ---CESM (High Energy) 3.531448374 3.13 3.1 0.560619304 1.121238609 
Cu ---CESM (High Energy) 3.531448374 3.13 4 0.560619304 1.121238609 
Cu ---CESM (High Energy) 3.531448374 3.386 5 0.610452132 1.220904263 
Cu ---CESM (High Energy) 3.531448374 3.386 6 0.610452132 1.220904263 
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Figure 13: Plot of Dense breast, CESM Technique , HVL and Circuit Impedance relationships 

 
 

As shown in the profile plots of Figure 13 using Table 4 for a Dense breast, using the CESM 

imaging technique; for a lower energy x-ray, the HVL of both the electronic circuit and metal 

filters, increase by about 3-5%, as breast thickness increases by over 90%. Also, for lower 

energy x-rays, the HVL of the electronic circuit is about 50% lesser than that provided by the 

respective metal filters analysed. Additionally and alternatively, for high energy x-rays, the 

plots indicate that the HVL of the electronic circuit is greater than that of the metallic filters, 

by about 5-10%, which is significant and further creates a design interest. Furthermore, the 

impedances of the electronic energy sensor filtering circuit, increases very minimally, between 

1-2% (with the total circuit impedance being double of the output impedance value) or rather 

approximately constant, with corresponding minimal increases in the HVL values of the 

electronic and Metals filters, respectively. Additionally, the impedances increases by over 90% 

from a photon/radiation energy radiation to a high energy radiation, for the same metal filters, 

and imaging technique. Also, for a higher energy x-ray radiation, while the HVL value of the 

electronic circuit remains approximately constant, that of the filter increases slightly for each 

metal filter; as breast thickness increases. 
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From the plots in Figure 13 using Table 4 and analysed results for the CESM Imaging 

technique; the observed slight increases in HVL for both the electronic circuit and the metal 

filters as breast increase for lower energy x-rays, indicates that as energy of radiation expectedly 

increases for a thicker breast, the systems still provides some amount of protection against 

harmful radiation, by the corresponding increase in HVL values; additionally, this slight 

increase in HVL, though small, is quite significant, as typical low energy x-ray, poses lesser 

harm from radiation; because accompanying recent numerical increases in yearly performed 

mammograms, is a growing concern for long-term effects of radiation; thereby indicating the 

importance of HVL and measuring the amount of radiation to the breast  (Culliton, 1976; Final 

reports of National Cancer Institute Ad Hoc, 1977; Lester, 1977). However, this slight increase 

in HVL for lower energy x-rays, will become inadequate when there is a large increase in breast 

thickness. Also, at lower energy levels, the HVL of the electronic circuit is not as large as that 

of the metal filter, thereby indicating that  because there is lesser radiation harm from the low 

energy x-ray, the electronic circuit responds with a lesser HVL value and lesser impedance 

values (Z2 and Zt); thereby intelligently balancing the needed x-ray energy for effective and 

safe use and the amount that can be safely passed to the body/breast tissue; but in this case the 

metal filter responds with greater sensitivity due to its inert metal nature, and provides a higher 

HVL for low energy x-ray. 
 

Furthermore, for a high energy x-rays as analysed for the CESM Imaging technique;  the much 

greater increases in HVL for both the electronic and metal filters, expectedly indicates that the 

system provides more protection against high energy radiations, by a correspondingly higher 

HVL values compared to lower energy x-rays. Additionally, typical thicker breasts 

examinations will require higher energy x-rays, and thereby the HVL values increases as 

thickness of breast increases, thereby providing significant protection for the body tissues, 

against even very large thickness of breast, because the HVL is the thickness of the specified 

material that attenuates the beam of radiation to the extent that the AKR is reduced to half its 

original value, thereby improving unwanted radiation protection even as breast thickness 

increases (IAEA, 2010). Also, for high energy x-rays, the HVL values of the electronic circuit 

higher than that from the metal filters, as the impedances of the electronic circuit (Z2 and Zt ) 
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increase in response to the higher radiation energy; thereby increasing the potential of the 

electronic circuits to provide even better protection from harmful radiations that are typical 

with high energy radiations, inline with the half reduction of beam intensity that HVL values 

indicate. This further provides the potential of the x-ray system to have more room to increase, 

decrease or vary energy for better flexible analysis; while the electronic circuit and with also 

the possible combination of the metal filters, can create a ‘hybrid’ system, that provides 

increased protection even with higher energy levels needed for a more accurate x-ray analysis 

(with a lesser ‘total/combined’ x-ray radiation energy). This system then provides a better trade-

off between x-ray radiation energy for better diagnosis and the safety of patient/body tissues 

from harmful radiations. The overall approximately constant values of the electronic circuit 

impedances at the low Energy or high energy levels, further indicates the electronic circuit 

integrity across different system conditions as required by the analysis. 

 

4.6   Breast Cancer Mammography Image Classification using CNN and Data Analysis 

 

As earlier described in the methodology, the convolutional neural network (CNN) deep 

learning and artificial intelligent algorithm for image classification was employed to analyse 

and classify  a few datasets (a total of 20 breast cancer mammographic  images, where 10 were 

for benign and 10 for malignant classes, respectively). The maximum pixel size of the pooling 

layer is also (2,2) and the pooling stride is also 2. By using the ReLU activation function, which 

is the most used activation function in the world right now; results were first obtained with one 

convolution and one pooling layer system, and the results shown in Figure 14. For Benign 

Tumor Datasets: Data Source - https://ieee-dataport.org/open-access/benign-breast-tumor-

dataset (IEEE DataPort) ; and For Malignant Breast Cancer Images: Data Source - 

https://www.kaggle.com/datasets/ramanathansp20/inbreast-dataset (INbreast Data base) 

 
 

https://ieee-dataport.org/open-access/benign-breast-tumor-dataset
https://ieee-dataport.org/open-access/benign-breast-tumor-dataset
https://www.kaggle.com/datasets/ramanathansp20/inbreast-dataset
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Figure 14 : Benign and Malignant breast cancer classifications and accuracy profile (1 

Pooling layer) 
 

Table 5 :  Reference validation accuracy measurement for 1 pooling(reference) layer 
 

 
 

From the results obtained and analysed in Figure 14, using just one pooling layer as well as one 

classification layer, the classification achieved a validation accuracy of 0.50 (50%), where as 

the training accuracy was obtained as 1.00 (100%); implying that the exact identical images 

were used for both training and testing. Here also, as shown, the images in Figure 14 were 

classified correctly into the two classes of benign and malignant breast cancers; and for a 

practical situation with a hug set of data, such automated AI –driven classification, makes the 

process of X-ray image processing and diagnosis much more efficient. This validation accuracy 

is at an average level as shown in Table 5, but this value is not good enough; it therefore implies 

Reference Validation Accuracy  

           (** as measured  (a1)) 

Number of Pooling layer 

    ( ** as reference  (P1)) 

   Max. Pooling size 

                            0.50                  1               (2,2) 
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that there are errors and the accuracy for validating non-training dataset used for the 

generalization ability of the model for the images, is fair. For such a case, more pooling layers 

are thereby needed for a better and model of higher validation accuracy and therefore even 

better image classification, which becomes pertinent when analysing a larger amount of x-ray 

images. For the accuracy of the model, using one pooling layer; the f1-scoreobtained was about 

0.67(67%) which is fairly good, indicating that the model has done an above average job of 

predicting and classifying the images. For a real life situation as this case, the f1-score is of 

most importance and a better metric due to the presence of imbalance class distributions which 

usually associated with real life datasets. 
 

Furthermore, now, applying Equations 17-20, as described in the methodology; we can 

mathematically and intelligently determine the maximum amount of pooling layers needed to 

obtain a target validation accuracy score. This is a helpful innovative step in the optimization 

process of the CNN image classification, to avoid using up more resources or layers than 

needed. By using the validation accuracy (a1) for one pooling layer as a reference point; and 

our target validation point or score as 75% (0.75); the maximum layer need to achieve the target 

validation score is calculated to be : 4.38, using Equations 19 and 20.  This therefore indicates 

that a maximum of about 4 pooling layers and also convolution layers are needed to achieve 

0.75 validation score, using the amount of image datasets and number of classes (i.e. 2) we 

used. When the same model was analysed, using the same conditions; 4 layers of pooling, 

confirmed the validation score of 0.75. 
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Figure 15 : Benign and Malignant breast cancer classifications and accuracy profile (4 

Pooling layers) 
 

Table 6:  Target validation accuracy measurement for 4 pooling (obtained) layer 
 

 
 
 
 
 
 
 
 
 

Targeted Validation 
Accuracy  

     (** as measured (a2)) 

Target ( NP ) layer 

( ** estimated theoretically) 

Target ( NP )  layer 

    ( ** measured) 

   Max. Pooling size 

                     0.75                    4.38              4               (2,2) 
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From Figure15, the classification achieved a validation accuracy of 0.75, whereas the training 

accuracy was obtained as 1.00; implying that the exact identical images were used for both 

training and testing. Here also, as shown the images in Figure 15 were classified correctly into 

the two classes of benign and malignant breast cancers; and for a practical situation with a hug 

set of data, such automated AI –driven classification, makes the process of X-ray image 

processing and diagnosis much more efficient. This validation accuracy is at a good level as 

shown in Table 6, and this value is good enough; it therefore implies that there are fewer errors 

and the accuracy for validating non-training dataset used for the generalization ability of the 

model for the images, is very good. For such a case, the numbers of poling layers are adequate 

to achieve the targeted validation score, within the same dataset and system conditions. This 

indicates that for an efficient and optimized intelligent, CNN image classification system for 

x-ray images; the maximum number of pooling layers can be intelligently estimated and also 

predicted, to ensure a more efficient and effective x-ray image analysis and classification 

process, which is vital for excellent x-ray procedures and analyses. Also, generally, activation 

accuracy will increase with a greater number of datasets. For the accuracy of the model, using 

four pooling layer; the f1-score is about (80%) which is very good and indicates the model has 

done a very good and precise job of predicting and classifying the images. 

 

Furthermore, the results suggest that, such an optimized CNN analysis system can also 

contribute to energy efficient      x-ray procedures, by utilizing exact or less resources to achieve 

excellent image classification quality, needed for better breast cancer and other cancerous 

imaging analysis, diagnosis and treatments; which would also relate to the CNN architecture 

employed, where some of the most commonly used pre-trained CNN architectures for 

mammography are: (Alex-Net (IAEA, 2010; Huynh, L, Giger, 2016; Gallego-Posada, 

Montoya-Zapata, Quintero-Montoya, 2016; Levy, Jain, 2016; Suzuki, Zhang, Homma, Ichiji, 

Sugita, Kawasumi et al., 2016; Jiang, Liu, Yu, Xie, 2017; Samala, Chan, Hadjiiski, Helvie, 

Cha, 2017; Carneiro, Nascimento, Bradley, 2017; Mohamed, Berg, Peng, Luo, Jankowitz, Wu, 

2017; Xi, Shu, Goubran, 2018; Zhang, Zhang, Han, Jacobs, Han, Wang  et al., 2017), VGG16 

(Gallego-Posada, Montoya-Zapata, Quintero-Montoya, 2016; Xi, Shu, Goubran, 2018; Shen, 

2017), etc.). 
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5. LIMITATIONS AND RECOMMENDATIONS OF STUDY 
 

This research study was focused on the data driven energy and resource based optimization 

analyses of breast cancer diagnostic x-ray techniques and image classifications, using analytics 

and deep learning artificial intelligence CNN algorithm; for a more efficient and safer x-ray 

procedure. Though a focused and insightful analyses of selected x-ray techniques, its relation 

to metal filters, the use of electronic engineering principles and artificial intelligence; there 

were also a few limitations within the scope of this study. In terms of data acquisition, the 

datasets used were from approved and dedicated data stores, repositories and databanks; which 

did not cover every aspect of human x-ray diagnosis and cancer related analyses; for example, 

age, other human physiological and demographic factors, were not covered. An example of this 

is from a breast Imaging Report and Data system from the American college of Radiology, 

which reports four major breast parenchymal patterns that are mainly used in mammography 

reports, states that “fatty” breasts have the least amount of fibro-glandular tissues and 

“extremely” dense breasts having the most fibro-glandular tissues. Furthermore, it states that 

over half of women younger than 50 years and a third of women above 50 years, have what is 

considered a dense breast tissue; and for the women with the densest breast, about 30-48% level 

of mammography sensitivity is achieved, which is quite low, but is also found to be a major 

risk factor for interval cancers (EA, D’Orsi, Bassett et al., 2013; Stomper, D’Souza, DiNitto, 

Arredondo, 1996; Mandelson, Oestreicher , Porter et al., 2000; Kolb, Lichy, Newhouse, 2002). 

Additionally, the analyses did not involve direct patients tests which could further add more 

perspectives to the study; with respect to other factors that may influence the results or image 

datasets. Also, for the CNN image classification analysis, a larger data set for even deeper 

layers of processing, and using a multi-view (MV) CNNs to embed more information for better 

performance; are a few ways to further expand the analyses (Abdelhafiz et al., 2017). 

 

Furthermore, for the metal filter analyses, a list of the most commonly used filters for x-ray and 

mammography was analysed. However, this list was non-exhaustive, as some filters which are 

also in use with respect to x-ray examinations, were not included; to ensure a more focused 

approach of the research work with respect to real life applications. Further analysis on more 

filters are also welcomed and would provide even more analysis that can provide additional 
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insights on how such can be used for an optimal, safe and efficient breast 

cancer(mammography) x-ray procedure.  

 

These unique analytical approaches, electronic circuit incorporation to the x-ray system, AI-

CNN analysis, and proposed theories, can be further investigated; with potential applications 

to a variety of human cancer situations and other medical ailments, so as to further explore and 

extend the potentials of such techniques and systems. All these promises even greater insights 

with respect to further developments for modern Data and AI-Driven cancer and healthcare 

services; as more bridges are being built between clinical, cancer researchers, data, machine 

learning and AI experts to create major collaborative opportunities (Kahles et al., 2018) 

 
6. CONCLUSIONS 
 
There is no doubt that data and AI driven systems are at the heart of modern medical science, 

researchers and practices; and cancer being a major cause of health related ailment and deaths, 

would need to continually be tackled with the use of modern data driven processes and 

technologies for the benefit of humanity.  Therefore, breast cancer  and its associated harmful 

radiation effects which is a major cause for mortality in women, needs to be continually studied, 

researched,  and treated optimally with innovative measures, processes, systems and 

technologies which not only should provide quality assessments, diagnosis, treatments; but 

must also resolve the harmful effect of unwanted radiations suffered by patients during breast 

cancer treatments; thereby creating an optimal, efficient(medical and energy) and safer breast 

cancer treatment, management and eradication processes. 

 

Datasets (including breast scan images) from trustworthy and recognized data stores, articles, 

portals, and sources were used for this study's research work, analyses, demonstrations and 

investigations; as a result, it may be assumed that the datasets are reliable and credible. This 

analytical research work which was carried out between October 2022 to January 2022 as a  

series of methodological and methodical analyses of how different factors and systems 

affecting breast cancer diagnosis and treatments using X-ray mammography, with respect to 

density of breasts. The data analytics tools, theories, procedures employed to measure, analyse, 

investigate, deduce, study and draw meaningful conclusions, delivered insights and interesting 



4 st International Congress of Social Science, Innovation & Educational Technologies 
 

574 

postulations on how such factors  and systems can be optimized to be more efficient, safer and 

also deliver more quality x-ray mammography and image classification procedures for the 

benefit of cancer patients and survivors. These of course, is also in harmony with the ‘green’ 

industry initiative world-wide, which is aimed at making systems more energy efficient while 

improving performance, as for example, reducing the intensity of x-ray beams while 

maintaining required energy levels, is pertinent for a safer, effective and efficient x-ray 

mammography procedures. 

 

The results obtained can serve as a background to even more work in these areas and expand 

research beyond the scope of this work, to create more results that can serve to further improve 

cancer research, diagnosis, treatments and management procedures in a cost effective and 

efficient manner, using modern analytical and data-driven Deep learning, Artificial Intelligent 

and Electronic Engineering solutions. With continuous improvements, the use of Artificial 

Intelligence, Machine/Deep Learning, Data Analytics and multidisciplinary tools in medical 

practices are a frontier in medicine; as exemplified by current works in early diagnosis and 

prevention, drug discovery, matching patients to clinical trials, treatment decisions and 

personalized medicine; and such will ensure that medical practices and professionals are better 

equipped to provide a more precise, effective, efficient, safer and robust healthcare for now and 

the future. 
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